
Property Sale Price Prediction in the city
of Daegu
Edward Bickerton

Department of Computer Science
University of Bristol

rw19842@bristol.ac.uk

Abstract—This report was completed as course-
work for the module Introduction to Artificial Intelli-
gence (EMATM0044). In this report, to make predic-
tions on property sale prices I apply two supervised
learning techniques; decision tree regression and a
multi layer perceptron (MLP), detailing the methods
used for selecting hyperparameters and comparing
their performance to a baseline model.

I. INTRODUCTION

A. Dataset
The dataset, coursework_fintech.csv, con-

tains information about property sold in the city of
Daegu including sale price, year and month sold along
with various features of the property such as size and
year built. Since we are trying to predict sale price,
a continuous variable, regression algorithms are the
natural fit for this problem.

All features are numeric except for
AptManageType and SubwayStation which are
strings, the models cannot directly handle this and so
some pre-processing is required to convert these strings
to integers. Since AptManageType takes values
self_management and management_in_trust
I use binary encoding, replacing self_management
with 1 and management_in_trust with 0. For
SubwayStation which is categorical data, I use
one-hot encoding [1] which converts the single column
into a column for each subway station, a 1 in a station’s
column signifies it being the nearest station to the
property otherwise it takes the value 0.

Making sure to shuffle the data beforehand, I create
a train test split using 80% of the data for training and
the remaining is kept aside as test data. I write these
datasets into new csv files so that they can be used
across the models.

B. Performance Metric
The two most commonly used metrics for evaluating

the performance of regression models are mean squared
error (MSE) and mean absolute error (MAE). I choose
MAE for the following reasons: being in the same units
as the sale price I find MAE to be more natural and

interpretable than MSE, MAE is less sensitive to outliers
in the error [2] and given the context of the task an error
of £20,000 should be treated as twice as bad as an error
of £10,000 (and not four times, as MSE would).

II. BASELINE MODEL

To serve as a baseline of performance I create
a dummy model using DummyRegressor from the
scikit-learn module sklearn.dummy. It is a very
simple regression model, outputting a constant function
equal to either the mean or median of the training data.
Fig. 1 shows the distribution of sale prices in the training
data.

0 1 2 3 4 5 6
Sale Price (100,000)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

Sale Price Distribution of Test Data

mean
median

Fig. 1: Distribution of sale prices in the training
data.

Since there is a positive skew to the sale price (and
since the dummy model needs all the help it can get)
I’ll use the median for my dummy model as the median
offers a (slightly) better measure of centrality.

III. DECISION TREE

I use scikit-learn’s DecisionTreeRegressor
from the sklearn.tree module [3]. Unfortunately,
scikit-learn’s implementation of a decision tree is much
slower when using MAE to evaluate the quality of split
than when it uses MSE [4], for this reason I use MSE
as criterion for picking splits.



1 2 3 4 5 6 7 8 9 10
Minimum Number of Samples at Leaf Nodes

6

9

12

15

18

21

24

27

M
ax

 D
ep

th
 o

f T
re

e

MAE

11800

11900

12000

12100

12200

12300

12400

12500

1 2 3 4 5 6 7 8 9 10
Minimum Number of Samples at Leaf Nodes

6

9

12

15

18

21

24

27

M
ax

 D
ep

th
 o

f T
re

e

Standard Deviation of Absolute Error 

14200

14400

14600

14800

15000

Fig. 2: Heatmap showing performances of decision trees using different amounts of pruning.

To avoid overfitting, I use parameters max_depth
to control the maximum depth of the tree and
min_samples_leaf which controls the minimum
number of samples at leaf nodes (in effect pruning the
tree).

A. Hyperparameter Selection
To select optimal values for max_depth and

min_samples_leaf I train a decision tree for each
pair of hyperparameters in [6, 28]× [1, 10] ⊂ Z2 (Note:
the depth of the tree without pruning is 28). Since
decision trees can be unstable, I use cross validation,
splitting the training set into 10 folds and cycling
through, training a decision tree using one fold for
validation and the remaining nine as training data. Using
the validation dataset, I calculate the performance of
the tree using the MAE and, since decision trees are
prone to instability, I take the standard deviation of the
absolute error. Finally, I take the mean of these statistics
across folds, fig. 2 shows the results.

I take the top 14 (there is a sharp increase in MAE
after 14) models with smallest (average across folds)
MAE and from these choose the model which had the
smallest standard deviation of absolute error. This gives
optimal hyperparameters 21 for max_depth and 4 for
min_samples_leaf.

IV. MULTI LAYER PERCEPTRON

For the MLP I chose PyTorch over scikit-learn for
GPU support [5], using [6] for the basis of my own
implementation.

Because the MLP is sensitive to the scale of features
[7], the model requires additional data pre-processing to
scale the values between 0 and 1. For this I fit scalers
from sklearn.preprocessing on the training
data before transforming both the train and test data.

I use mini batch gradient descent [8], which updates
the neural network (NN) weights based on the average
gradient (with respect to said weights) of the loss
function (MAE) taken from a batch of the training data.
A training iteration (or epoch) is a single pass through

the entire training set. Thus, if the batch size is smaller
the NN weights are updated more frequently (which
increases the time taken to complete an epoch), whereas
for larger batch sizes the NN weights are updated less
frequently but, being the average of a larger number of
samples, the gradient more reliably points towards the
minimum loss.

A. Neural Network Architecture
To keep the number of hyperparameters to a mini-

mum, each hidden layer is fully connected and of the
same size (in any case it was shown in [9] that using
the same size for all layers worked generally better
or the same as decreasing or increasing the sizes). To
introduce non-linearity into the model I use ReLU(x) =
max(0, x) in-between each of the layers as opposed
to the sigmoid function as it is less computationally
expensive and doesn’t suffer from the vanishing gradient
problem [10].

This leaves the following hyperparameters to tune:
number of hidden layers, size of hidden layers, number
of training iterations (epochs), batch size and learning
rate.

B. Hyperparameter Selection
Since training a NN is much more computationally

expensive than training the decision tree it is not feasible
to train hundreds of models required for cross valida-
tion. So, for the MLP I will simply split the training data
further to create a train-validation-test split, using 60%
of the data for training and the remaining 40% is split
equally between test and validation data. Also, to reduce
the size of the search space of the hyperparameters I will
implement several ideas from [11];

• number of epochs: I use early stopping i.e., train-
ing the model for a larger number of epochs than
required (namely 500) then looking at the learning
curve and selecting a value for which the model’s
performance on validation data has converged.
Since early stopping is the strongest mechanism
for preventing overfitting, “it hides the overfitting



16 32 64 128 256 512
Size of Hidden Layers

2

4

8

16

32

N
um

be
r o

f H
id

de
n 

La
ye

rs

Multilayer Perceptron MAE

10000

10500

11000

11500

12000

12500

(a) Selecting hidden layer size and number of hidden
layers, using default values of learning rate and batch
size without early stopping.

0.0001 0.0003 0.0009 0.003 0.008 0.02 0.07 0.2
Learning Rate

8

16

32

64

128

256

512

1024

B
at

ch
 S

iz
e

Multilayer Perceptron MAE

10000

10500

11000

11500

12000

12500

(b) Selecting learning rate and batch size using the
optimised values for hidden layer size and number of
hidden layers, still without early stopping.

Fig. 3: Heatmap showing performances of MLP using different values of hyperparameters.

effect of other hyperparameters” (as stated in
section 3.1.1 of [11]). Thus, early stopping will
only be used once the other hyperparameters have
been selected.

• Batch size and learning rate: since batch size
mainly effects training time and not so much
training performance and since batch size and
learning rate may interact, I will optimise number
of hidden layers and size of hidden layers using
a default value of 32 for batch size (as recom-
mended in [12]) and 0.01 for learning rate, before
optimising batch size and learning rate together as
recommended in section 3.1.1 of [11].

• Scale of values considered: to test a wide range
of values of hyperparameters without needlessly
trying out many candidate hyperparameters, I take
a uniform sampling in the log-domain of each
hyperparameter as suggested in section 3.3.1 of
[11].

After training 94 models fig. 3 shows the results of the
hyperparameter selection. A MLP with 8 hidden layers
of size 256 using a learning rate of 9×10−4 and batch
size of 32 is selected (for having the lowest MAE).
All that remains is to reduce the number of training
iterations to avoid overfitting.

From fig. 4 we can see that the performance of the
model converges after about 150 epochs, beyond which
additional epochs will only result in an unstable and
overfit model. Thus, I set the hyperparameter to 150.

V. RESULTS AND ANALYSIS

Once the hyperparameters have been selected I re-
train both models using the entire training set, their
performances on the test data can be seen in table
I. Both models significantly outperform the baseline
and table I suggests that the Multilayer Perceptron out
performs the Decision Tree.

0 100 200 300 400 500
Epoch

10000

15000

20000

25000

30000

35000

40000

45000

M
A

E

num_hidden_layers=8
hidden_layer_size=256
batch_size=32
learning_rate=0.0009

Learning Curve

Fig. 4: Performance of the MLP using optimised
hyperparameters against the number of epochs.

TABLE I: Model Performances

MAE

Baseline 88,212.58
Decision Tree 11,648.72
Multilayer Perceptron 10,472.80

To make the conclusion that the MLP outperforms
the decision tree statistically rigorous, I use cross val-
idation. Splitting the entire data set into 10 folds and
training 10 decision trees and multilayer perceptrons,
using a different fold each time as the test data. From
this I obtain 10 values of the MAE for each model
which can be seen in fig. 5. The two box plots hardly
overlap supporting the conclusion and a paired t-test
gives a p-value of 3.33× 10−5 confirming the conclu-
sion further.



9500 10000 10500 11000 11500 12000
MAE

DT

MLP

Cross Validation for Model Comparison

Fig. 5: Performance of the multilayer perceptron
and decision tree using 10-fold cross validation.

VI. CONCLUSION

Although the MLP outperforms the decision tree,
there are other things to consider when deciding be-
tween the two models.

The decision tree does not require the same level of
pre-processing as the MLP and the MLP required tuning
more hyperparameters. Decision trees can handle both
numeric and categorical data and even handle missing
values (although scikit-learn’s implementation cannot
[13]).

Decision trees are highly interpretable. For example,
table II shows the top five most important features for
creating splits in the decision tree, this could be valuable
when deciding what information is key when marketing
a house. Plotting the tree as in fig. 6, allows you to
understand why a specific house was given a particular
prediction of sale price, and could aid a developer
in making the most cost-effective improvements to a
property to maximise return on investment.

Overall, the decision between which model to use
will depend greatly on the specifics of the application,
including the client’s needs.

TABLE II: Feature Importance

Feature Relative Importance

Size(sqf) 0.56
YrSold 0.19
N FacilitiesNearBy(ETC) 0.14
N Parkinglot(Basement) 0.05
YearBuilt 0.02

Size(sqf) <= 802.0
samples = 4713
value = 221475.0

N_Parkinglot(Basement) <= 1052.0
samples = 1499
value = 124017.9

True

N_FacilitiesNearBy(ETC) <= 0.5
samples = 3214
value = 266928.7

False

YrSold <= 2012.5
samples = 1411
value = 115144.8

YrSold <= 2015.5
samples = 88

value = 266290.7

Size(sqf) <= 709.5
samples = 663
value = 86177.7

Size(sqf) <= 565.0
samples = 748
value = 140820.2

N_FacilitiesNearBy(Park) <= 0.5
samples = 587
value = 78532.1

YrSold <= 2010.5
samples = 76

value = 145230.0

(...) (...) (...) (...)

AptManageType <= 0.5
samples = 193
value = 84437.6

N_FacilitiesNearBy(Park) <= 0.5
samples = 555
value = 160427.1

(...) (...) (...) (...)

samples = 7
value = 197281.3

N_Parkinglot(Basement) <= 1247.5
samples = 81

value = 272254.5

YrSold <= 2016.5
samples = 51

value = 261720.8

Floor <= 29.5
samples = 30

value = 290161.8

(...) (...) (...) (...)

Size(sqf) <= 1440.5
samples = 1775
value = 310020.2

YrSold <= 2014.5
samples = 1439
value = 213775.5

YrSold <= 2014.5
samples = 1351
value = 280992.7

YrSold <= 2014.5
samples = 424
value = 402511.2

Size(sqf) <= 1220.0
samples = 924
value = 248848.9

N_manager <= 3.0
samples = 427
value = 350549.8

(...) (...) (...) (...)

YrSold <= 2011.5
samples = 307
value = 381135.4

N_FacilitiesNearBy(Park) <= 1.5
samples = 117
value = 458599.9

(...) (...) (...) (...)

YrSold <= 2012.5
samples = 1050
value = 183822.2

N_Parkinglot(Basement) <= 986.0
samples = 389
value = 294626.3

Size(sqf) <= 1145.5
samples = 765
value = 171023.2

Size(sqf) <= 1145.5
samples = 285
value = 218177.5

(...) (...) (...) (...)

Size(sqf) <= 1145.5
samples = 279
value = 274231.4

Size(sqf) <= 999.5
samples = 110
value = 346355.1

(...) (...) (...) (...)

Fig. 6: A graph of the decision tree cropped to a depth of four. The colour of the nodes represents the
sale prices of the samples at the node, darker being properties with a higher sale price.



REFERENCES

[1] Jason Brownlee. “Why One-Hot Encode
Data in Machine Learning?” In: Machine
Learning Mastery (June 2020). URL: https:
/ / machinelearningmastery. com / why - one -
hot-encode-data-in-machine-learning/.

[2] Cort J. Willmott and Kenji Matsuura. “Ad-
vantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in
assessing average model performance”. In:
Climate Research 30.1 (2005), pp. 79–82.

[3] scikit-learn.
sklearn.tree.DecisionTreeRegressor.
URL: https : / / scikit - learn . org / stable /
modules / generated / sklearn . tree .
DecisionTreeRegressor.html.

[4] GitHub user mcgibbon. “Use median in-
stead of mean when constructing Random-
ForestRegressor”. In: scikit-learn GitHub
issue #9553 (2017). URL: https : / / github.
com/scikit- learn/scikit- learn/issues/9553#
issuecomment-322330522.

[5] “Will you add GPU support?” In: scikit-
learn.org FAQ (2023). URL: https://scikit-
learn .org / stable / faq .html#will - you- add-
gpu-support.

[6] Adrian Tam. “Building a Regression
Model in PyTorch”. In: Machine Learning
Mastery (Apr. 2023). URL: https : / /
machinelearningmastery. com / building - a -
regression-model-in-pytorch/.

[7] scikit-learn. 1.17.8. Tips on Practical
Use. URL: https : / / scikit - learn .

org / stable / modules / neural networks
supervised.html#tips-on-practical-use.

[8] Jason Brownlee. “A Gentle Introduc-
tion to Mini-Batch Gradient Descent and
How to Configure Batch Size”. In: Ma-
chine Learning Mastery (Aug. 2019). URL:
machinelearningmastery . com / gentle -
introduction-mini-batch-gradient-descent-
configure-batch-size/.

[9] Hugo Larochelle et al. “Exploring Strate-
gies for Training Deep Neural Networks”.
In: J. Mach. Learn. Res. 10 (June 2009),
pp. 1–40. ISSN: 1532-4435.

[10] Xavier Glorot, Antoine Bordes, and Yoshua
Bengio. “Deep Sparse Rectifier Neural Net-
works”. In: International Conference on
Artificial Intelligence and Statistics (2011).

[11] Yoshua Bengio. “Practical recommenda-
tions for gradient-based training of deep
architectures”. In: arXiv (2012).

[12] Dominic Masters and Carlo Luschi. “Revis-
iting Small Batch Training for Deep Neural
Networks”. In: (2018).

[13] scikit-learn. Decision Trees. URL: https : / /
scikit- learn.org/stable/modules/tree.html#
tree.

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://github.com/scikit-learn/scikit-learn/issues/9553#issuecomment-322330522
https://github.com/scikit-learn/scikit-learn/issues/9553#issuecomment-322330522
https://github.com/scikit-learn/scikit-learn/issues/9553#issuecomment-322330522
https://scikit-learn.org/stable/faq.html#will-you-add-gpu-support
https://scikit-learn.org/stable/faq.html#will-you-add-gpu-support
https://scikit-learn.org/stable/faq.html#will-you-add-gpu-support
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#tips-on-practical-use
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#tips-on-practical-use
https://scikit-learn.org/stable/modules/neural_networks_supervised.html#tips-on-practical-use
machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
https://scikit-learn.org/stable/modules/tree.html#tree
https://scikit-learn.org/stable/modules/tree.html#tree
https://scikit-learn.org/stable/modules/tree.html#tree

	Introduction
	Dataset
	Performance Metric

	Baseline Model
	Decision Tree
	Hyperparameter Selection

	Multi Layer Perceptron
	Neural Network Architecture
	Hyperparameter Selection

	Results and Analysis
	Conclusion

