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Abstract—This report was completed as course-
work for the module Introduction to Financial
Technology (COMSM0093). In this report I will
investigate how the choice of parameters k and F
affect the behaviour of the adaptive trading algo-
rithm known as Parameterised Response Differential
Evolution (PRDE). To do so, I will design and execute
a set of experiments on the Bristol Stock Exchange
(BSE).

Index Terms—Automated Trading, Financial Mar-
kets, Adaptive Trader-Agents, Optimization, Differ-
ential Evolution.

I. INTRODUCTION

A. Experiments on the Bristol Stock Exchange

In my evaluation of PRDE I will use experi-
ments of the style pioneered by Vernon Smith in
[1], in which both buyers and sellers are given
private limit prices. Buyers may then quote bid
prices below their limit price and sellers may quote
offer prices above their limit price as part of a
continuous double auction.

These experiments will be executed using the
Bristol Stock Exchange (BSE), an open-source
[2] simulation of a centralised financial exchange,
based on a Limit Order Book (LOB) created by
Dave Cliff [3]. BSE lets you populate a simulated
market with different automated traders from a
selection of built in trading algorithms, including
the algorithm of interest PRDE.

B. Zero Intelligence Trading Algorithms

To understand the behaviour of PRDE it is help-
ful to be aware of some basic trading algorithms.

Zero-Intelligence Constrained (ZIC) was first
introduced in [4] in order to investigate the im-
portance of the intelligence of the traders in the
allocative efficiency of a CDA. As suggested by
the name ZIC does not observe, remember, or

learn, ZIC traders produce random bids or offers
(depending on whether they are a buyer or seller)
independently from a uniform distribution over the
entire range of feasible trade prices. However, they
are constrained not to make bids or offers that
would result in a loss-making deal (i.e., sellers
cannot make offers below their limit price and
buyers cannot make bids above their limit price).

The second trading algorithm I will intro-
duce is GVWY (for “Giveaway”), which unlike
ZIC is completely deterministic. Another zero-
intelligence trader, GVWY simply makes bids or
offers at its limit price. Although there is no
difference between its bid/offer price, GVWY is
able to enter into profitable trades due to the
spread-crossing rule of LOB-based markets.

A third zero-intelligence trader known as SHVR
(for “Shaver”) is again completely deterministic
and always makes bids or offers which are just
one penny better than the LOB price. So if the
SHVR is a buyer, it will make a bid one penny
greater than the best (greatest) bid on the LOB
providing this is lower than or equal to its limit
price. Similarly if it is a seller, it will make an
offer one penny lower than the best (lowest) offer
providing this is greater than or equal to its limit
price. Surprisingly, both GVWY and SHVR have
been shown to out-perform more complex trading
algorithms (when market conditions were in their
favour) such as Zero-Intelligence Plus (ZIP) which
incorporates machine learning [5].

GVWY can be thought of as an urgent trading
strategy, trading profit for a reduced time to trans-
act. Whereas SHVR can be thought of as a more
relaxed trading strategy, increasing the expected
time to transact at the benefit of an increased
profit.



The final zero-intelligence trader I will in-
troduce is Parameterised Response Zero Intelli-
gence (PRZI) introduced in [6]. PRZI like ZIC
traders produces random bids or offers however,
rather than using a uniform distribution to draw
its bids/offers from, PRZI uses a probability
mass function (PMF) which depends on the fixed
strategy-parameter s. When s is 0 the PMF is
uniform and PRZI acts exactly as ZIC does.
Increasing s has the affect of making the trader
more urgent i.e., skewing the PMF towards the
traders limit price until at s = +1 the trader
acts deterministically just as GVWY would. De-
creasing s has the opposite affect, making the
trader more relaxed until at s = −1 the trader
acts deterministically just as SHVR would. Further
details of ZIC, GVWY, SHVR and PRZI can be
found in [6].

C. Adaptive Trading Algorithms
Once learning about PRZI a natural question to

ask is how best to select the strategy parameter s?
Rather than having a fixed s, a smarter approach is
to let the trader alter its strategy parameter based
on market conditions. A simple implementation of
such an adaptive trader introduced in [6] known
as Parameterised Response Stochastic Hillclimber
(PRSH), uses a simple (and inefficient) stochastic
hill climbing method to adapt its value of s based
on its performance as a trader. A natural approach
to improving upon PRSH is to simply use a bet-
ter optimization algorithm for the selection of s.
Differential Evolution (DE) [7] provides a flexible
and versatile solution to complex optimisation
problems and has been shown in a review of the
research on DE [8] to be a top performing method
in various machine learning competitions. Intro-
duced in [9], Parameterised Response Differential
Evolution (PRDE) does just that and was shown
to be improvement over PRSH.

D. Differential Evolution
I will give a brief introduction and overview of

the optimisation algorithm: Differential Evolution
and its implementation in PRDE, but further de-
tails can be found in the original paper [7] and
in [8]. Using DE for PRDE is simpler than the
general algorithm of DE because the crossover
step is not required as s ∈ [−1,+1] ⊂ R is a
one-dimensional vector.

The first phase is initialisation: a population
of k ∈ Z+ values of the strategy parameter are
generated from a uniform distribution on the range
from -1 to 1, K = {si : i = 1, 2, . . . , k}.

In the second phase (evolution): mutation and
selection operations are performed. Mutation in-
volves generating a mutant strategy parameter for
each si ∈ K denoted as s∗i . Three distinct strategy
parameters are chosen at random from K : sa, sb
and sc such that i, a, b and c are all distinct (note
this means we must have k ≥ 4), then the mutant
strategy parameter is calculated as

s∗i = max(min(sa +F × (sb − sc),+1),−1) (1)

where F ∈ [0, 2] ⊂ R is the differential weight
coefficient. In the selection process the fitness of
both si and s∗i is evaluated by trading in the market
using the strategy parameter for a set period of
time (30 minutes in the following experiments)
and if the fitness of s∗i is greater than the fitness
of si it takes its place in K (surviving to the next
generation) otherwise it is discarded. In this case
fitness is determined by profit per second.

The evolution phase is then repeated over the
whole lifetime of the PRDE trader. Further details
of how DE is implemented in PRDE can be found
in [9]. This process leaves two parameters to be
chosen; k the size of the population and F the
differential weight coefficient. The choice of these
parameters and their affects on the performance of
PRDE is explored in the next sections.

II. EXPERIMENTAL EVALUATION OF PRDE

A market populated by trading algorithms fol-
lowing adaptive strategies such as PRDE quickly
becomes far too complex to form a full analytic
understanding of the system. Thus it becomes
necessary to use empirical methods (simulated
market sessions) to study trading algorithms such
as PRDE.

A. Market Conditions

Inspired by the experiments comparing PRSH
and PRDE in [9], in each of my experiments I
will run homogeneous population tests in which
the market is populated entirely by PRDE traders.
The market will contain a total of 30 traders,
split down the middle between buyers and sell-
ers. I will use static supply and demand curves



which have perfect elasticity, the buyers will
have a limit price of $140 and the sellers
will have a limit price of $60 ensuring every
trader can find a counterparty to transact with.
Note: the initializing function __init__ of the
PRZI trader class Trader_PRZI and the func-
tion unpack_params nested within the func-
tion populate_market of the file BSE.py
has been altered slightly altered to allow both
strat_wait_time (the time PRDE spends
evaluating each strategy) and F (the differential
weight coefficient) to be passed as parameters in
the traders specification.

We would be unlikely to observe such market
conditions in the real world. However, in the
interest of saving compute power (it took an
AWS EC2 instance type c6g.xlarge roughly
3 hours to simulate 30 days of market time),
simplified market conditions are used to establish
a baseline performance of PRDE. It may be of
interest to perform further simulation, for example
investigating the effect of a non-homogeneous
population of traders on the behaviour of PRDE
or to understand how PRDE reacts to a dynamic
market with market shocks.

It is worth noting that each PRDE trader eval-
uated each of its k strategies for 30 minutes thus
taking k/2 simulated hours of trading for the
trader to evaluate each of its strategies (i.e., time
taken to complete one generation of strategies). So
for a PRDE trader with k = 10 it takes 5 hours
of simulated time per generation of strategies,
therefore it is preferable for market sessions to
be simulated for some large multiple of this time
so that the PRDE traders have a chance to run
through multiple generations.

Fig. 1 shows the evolution of five of the buyers’
and sellers’ strategy parameter, during an initial
market simulation of 30 days with all PRDE
traders using a differential weight, F = 0.8 and
population size, k = 7. It appears that the PRDE
traders tend to be more urgent and act more like
GVWY traders when they are sellers, and more
relaxed and act more like SHVR traders when they
are buyers.
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Fig. 1. Strategy Parameter, s of five buyers and five sellers
selected randomly from a single simulated market session. All
traders used k = 7 and F = 0.8.

To confirm this hypothesis that PRDE buyers
are more relaxed than PRDE sellers the students
t-test can be applied. This is an appropriate test
as by inspecting Fig. 2 we can see that the
distribution of the mean strategy parameter is
roughly normal for both buyers and sellers, and
both distributions have a similar variance. As
suspected, the p-value for the test is very small
(less than 10−40), and so the difference between
the strategy parameter of PRDE buyers and sellers
is statistically significant.
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Fig. 2. Distribution of mean strategy parameter of trader from
multiple 30 day market sessions with PRDE traders using a
variety of k and F values (but homogeneous in each market
session).

B. Population Size, k

To investigate the effect of the population size
of strategies, k on the performance of PRDE
traders I will set F = 0.8 as it is in [9], and run
five simulated 30 day market sessions using the
market conditions as above, each with a different
value of k. Looking at Fig. 3, k does not appear



to have a significant effect on the evolution of the
strategy parameter. So instead I will look at how
the value of k affects the profitability of the PRDE
trader, using profit per second (PPS).
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Fig. 3. Plot of best strategy parameter from several market
sessions, each with F = 0.8 but with k varying. The upper
lines belong to sellers, while the lower lines belong to the
buyers.

From Fig. 4 and table I it appears that the
PRDE trades with a population size, k = 4
and 7 outperform the rest, while PRDE traders
with k = 16 are the least profitable. This is
somewhat expected as in [7] the recommended k
value (referred to as NP in [7]) is a value between
5 ×D and 10 ×D where D is the dimension of
the vector being optimised, and so in this case that
range is from 5 to 10.

TABLE I
MEAN PRICE PER SECOND, PPS

k=4 k=7 k=10 k=13 k=16
Mean PPS 94.11 93.31 95.33 92.06 91.57

C. Differential Weight, F

Similarly to the previous section, to investigate
the effect of the differential weight, F on the
performance of PRDE I will set k = 7, and run
five simulated 30 day market sessions using the
market conditions as above, each with a different
value of F . Interestingly, increasing F appears to
make sellers more relaxed and buyers more urgent
(i.e., s is closer to 0), as displayed in table II and
Fig. 5.

TABLE II
AVERAGE SATRATEGY PARAMETER

F=0.4 F=0.8 F=1.2 F=1.6 F=2
Seller 0.34 0.48 0.16 0.09 0.09
Buyer -0.22 -0.48 -0.23 -0.06
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Fig. 5. Plot of best strategy parameter from several market
sessions, each with k = 7 but with F varying. The upper lines
belong to sellers, while the lower lines belong to the buyers.

However, I will still look at how the value of
F affects the profitability of the PRDE trader,
again using PPS. Inspecting Fig. 6 and table III,
it appears that for a value of F greater than 0.4
the PRDE traders have a similar performance by
the end of the 30 days of simulation, however the
PRDE traders with F = 0.8 take much longer
to reach the same profitability levels as those
with F = 1.2 or higher. The PRDE traders with
F = 0.4 significantly underperforming. This is
perhaps not surprising as in [7] it states “F = 0.5
is usually a good initial choice. If the population
converges prematurely, then F and/or NP should
be increased. Values of F smaller than 0.4, like
those greater than 1, are only occasionally effec-
tive.”, and inspecting Eq.1 we can see that a larger
F increases the amount of mutation which occurs.

TABLE III
MEAN PRICE PER SECOND, PPS

F=0.4 F=0.8 F=1.2 F=1.6 F=2
Mean PPS 90.36 93.31 96.04 96.89 96.39

D. Further Experiments

To get a better understanding of how k and F
affect the performance of PRDE I will run some
further experiments. A trading period of 10 days
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Fig. 4. Plot of profitability data of several market sessions with k varying.
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is run for each combination of the previously used
k and F values. Each of these experiments is run
twice. The results of these experiments can be seen
in Fig. 7 - 9.
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Fig. 7. Box plot of total profit of the PRDE traders with
varying values of k.

Fig. 7 suggests that the optimal value of k is 4,
however the difference between the box plots is
not great.
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Fig. 8. Box plot of total profit of the PRDE traders with
varying values of F .

From Fig. 8 it is not clear whether PRDE traders
with F = 1.6 outperform those with F = 2 as
their respective means are very close. But there is
certainly a trend of increasing performance with
increasing differential weight, F .
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Fig. 9. Heat map of average total profit of the PRDE traders
with varying values of both k and F .

Fig. 9 gives the clearest view of the affect of k
and F on profitability of PRDE traders. We can
see that the most profitable combinations of k and
F are (k = 7, F = 0.8), (k = 7, F = 2), and
(k = 13, F = 1.6) while the worst performing
combination is clearly (k = 4, F = 0.4). How-
ever, the plot would benefit from running more
experiments with a greater number of values of
both k and F . It is also worth noting that each
square represents the average total profit of the
PRDE traders after 10 days of a sample with size
just 2.

III. CONCLUSION

Unfortunately, it is hard to draw concrete con-
clusions from the data as the experiments of
section II.A-C while having a more appropriate
simulation time of 30 days consist of only one
sample for each pair (k, F ). The experiments
of section II.D don’t simulate enough time (10
days only allows PRDE traders with k = 16 to
go through 30 generations of strategy parameter)
and in any case the sample size is 2 which is not
enough to perform statistical tests on. However,
this document does serve as a template for further
experiments and analysis; it would be very easy
to increase both the sample size and simulation
duration of the experiments in section II.D.
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