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I. PRINCIPAL COMPONENT ANALYSIS
A. Dataset

The dataset [1] I have chosen for this task consists of daily
opening prices of 1,000 of the top cryptocurrencies (price
data originally sourced from [2]). The data spans from the
17" of September 2014 to the 16" of May 2023. Hence,
this dataset is very large with 1,000 features (excluding date)
and 3,164 instances. Fig. 1 shows this data for the two
largest cryptocurrencies by market capitalisation: Bitcoin [3]
and Ethereum [4].

From fig. 1 we see that both cryptocurrencies are highly
volatile, and both appear to be highly correlated, indeed the
Pearson product-moment correlation coefficient is 0.923. We
also note that price data for Ethereum before roughly 2018 is
missing, this is in part due to Ethereum being in a relatively
early stage of development up until the Byzantium fork in late
2017 [5]. Likewise, many of the other cryptocurrencies in the
dataset do not have price data going back to 2014, resulting
in 2,053, 223 missing values (65% of the data).

Thus, I filter the data to contain only price data from 2019
onwards, then cryptocurrencies with more than 10% missing
values are removed. Finally, any remaining missing values are
filled using backfill. The resulting dataset contains 295 features
and 1,597 instances.

B. Method

Frequently used by data analysts, Principal Component
Analysis (PCA) is a method of reducing the dimensionality
of complex datasets; that is given a dataset with many fea-
tures, output another dataset with fewer features. In this way
PCA can be used to extract key structures from the original
dataset. The concept of redundancy is the key concept behind
dimensionality reduction, for example if two features of our
dataset are highly correlated then the data can be expressed
concisely by removing one of these features. No information
is lost since the remaining feature can be used to calculate the
removed feature via best-fit line between the two.

If we think of our dataset as a matrix, M € R™*? (n & d are
the number of instances and attributes respectively) then PCA
can be described simply in terms of linear algebra. PCA is
the process of finding new basis vectors such that when M is
transformed with respect to these basis vectors, its underlying
structure becomes apparent. Note: framing the problem in this
way necessarily assumes linearity.

Video presentation available at: http:/tiny.cc/68b7vz
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Fig. 1. Price data for Bitcoin and Ethereum in US dollars.

Let Y € R™"*? be the resulting matrix of the transformation
of M. What does it mean for Y to make the underlying
structure of M apparent? Consider the covariance matrix of
Y, Cy = {c;;} € R¥4 where ¢;; is the covariance between
columns ¢ and 7 of Y (hence the diagonal terms are the
variances of their corresponding column of Y). For the case
where the mean of each column is zero,

Cy = lYTY. (1)
n
PCA assumes that the signal to noise ratio (SNR, the ratio of
variances 02, gnal /02 ,:s0) is greater than one and thus that the
dynamic of interest lies along the line of greatest variance.
Thus, the target matrix Y should have a diagonal covariance
matrix Cy, i.e., distinct columns of Y have zero covariance
(and hence have zero correlation).
To make this concrete, let pi,...,ps € R? be such a set
of basis vectors and P = (p; ... pg) € R?*9, the matrix
consisting of these vectors as columns, then

MP =Y € R"*¢, )

The vectors p1, . . ., pg are known as the principal components
of M. Assuming the columns of M have zero means then
substituting eq. 2 into eq. 1 gives the following:
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n n
1
=-PTMTMP
n
1
=pT (MTM> P
n

= PTcyP (3)



where C) is the covariance matrix of M. Hence the goal of
PCA is to find a matrix P such that PTCy;P is a diagonal
matrix.

This problem becomes soluble if we assume that the princi-
pal components are orthogonal. By theorem 4 in appendix A of
[6] since C'j; is symmetric (the covariance of column 4 and j
of M is equal to the covariance of column j and ¢ of M) it can
be diagonalised by a matrix of its orthonormal eigenvectors.
Hence, if e, ..., e4 € R? are the orthonormal eigenvectors of
Cy and E = (e1 ... eq) € R¥? then 3 a diagonal matrix
D € R¥ such that Oy = EDET. Substituting this into
eq. 3 gives Cy = PT (EDE™) P. Thus, we can take the
principal components to be the orthonormal eigenvectors of
Cyy ie., letting P = E (by theorem 1 in appendix A of [6]:
ET = E~1). This method of finding the principal components
is known as Eigen decomposition [7].

In practice this means that given a dataset with d columns
and n rows, if we first subtract the mean from each column
and compute the corresponding covariance matrix. We then
find the principal components by calculating the eigenvalues
of this matrix. When constructing P we order the principal
components with respect to descending eigenvalues, since
these correspond to the variance of the data in the direction of
the principal component. Using P we then compute the matrix
Y. The latter columns of Y explain less of the total variance
and as such are less significant. Thus, to reduce the dimension
of Y you simply remove the latter columns corresponding to
insignificant principal components.

C. Results & Analysis

Before applying PCA to the cryptocurrency dataset I apply
a standard scaler. This removes the mean of each feature
as required for PCA and scales each column to have unit
variance, ensuring features with large values don’t dominate
the results.

Fig. 2 demonstrates that PCA succeeded in identifying the
strong correlation between the prices of Bitcoin and Ethereum.
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Fig. 2. Scatter plot of ETH against BTC. The red line shows the direction
of the first principal component in this 2-dimensional subspace.
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Fig. 3. Scree plot of the cryptocurrency dataset for the first 25 of 295 principal
components obtained from Eigen decomposition PCA.

Fig. 3 shows the scree plot for the cryptocurrency dataset,
the eigenvalue of the corresponding principal component,
equivalent to the variance of the data in the direction of
the principal component. We can see that there is significant
variation for the first 10 and very little variation for the latter
components; indeed, Kaiser’s rule, which suggests discarding
components whose eigenvalue is less than one (i.e., it contains
less information than a single feature of the original dataset),
results in a dataset with just 17 features.

In fact, upon observing fig. 4, one could argue that Kaiser’s
rule has selected too many components and that 5 would
suffice. From fig. 4 we see that just 5 components explain over
80% of the price data of the 295 different cryptocurrencies.

D. Clustering using PCA features

From inspecting fig. 2 it appears that the points form at least
two clusters. To investigate further and demonstrate the utility
of PCA, I use a Gaussian mixture model to group the data
points, using the 5 features generated by PCA in the previous
section.
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Fig. 4. Cumulative explained variance of the principal components of the
cryptocurrency dataset. Explained variance is the eigenvalue as a ratio of the
sum of eigenvalues (i.e., total variance).
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Fig. 5. Elbow plot for Gaussian mixture models.

The Gaussian mixture model (GMM) requires the tuning
of a key hyper-parameter: the number of clusters to group the
data into. Thus, I create a train-test split using 70% of the data
as training data and train GMMs with 1 to 15 clusters. Using
the Akaike information criterion on the test data to evaluate
the performance of each GMM, which can be seen in fig. 5.

From fig. 5 I choose the number of clusters to be four,
before training a final GMM of the full dataset, the results of
which can be seen in fig. 6 & 7.

From fig. 6 we see that the GMM has identified categories
which were not visible upon initial inspection of fig. 2, and fig.
7 shows that the GMM has identified time periods for which
the cryptocurrency market behaves very differently. This could
be invaluable for predicting price movements, for example for
cluster 1 you can expect high volatility with a strong upward
trend.

The benefits of applying PCA before the GMM is twofold;
it removes noise from the data, and it dramatically reduces the
computation expense since the GMM is clustering points in a
5-dimensional space as opposed to 295 dimensions.
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Fig. 6. Scatter plot of ETH against BTC. The colours represent the categories
given by the Gaussian mixture model applied to the 5 PCA features.
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Fig. 7. Average scaled price over all 295 cryptocurrencies. The colours
represent the categories given by the Gaussian mixture model applied to the
5 PCA features.

II. Dow JONES INDUSTRIAL AVERAGE

Beyond dimensionality reduction, PCA can also be used to
generate portfolios by mapping the eigenvectors to portfolio
weights.

A. Data Preprocessing

For this task I use price data of the 30 stocks in the Dow
Jones Industrial Average (DJIA) from the year 2000 to 2019.
Fig. 8 shows the correlation matrix of this dataset, we can see
that a significant number of the stocks are highly correlated,
many of which are positively correlated.

Before applying PCA I must handle the missing values in
the dataset of which there are 6,504 (4.5%). Upon inspection
it appears that some stocks have many missing values, likely
because they were added to the DJIA after the start date of the
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Fig. 8. Correlation matrix of the Dow Jones Industrial Average for the years
from 2000 to 2019.



data. Thus, I remove columns which are missing more than
10% of their data, removing stocks with ticker “DWDP” and
“V”. Remaining missing values are filled in using forward fill.

Since, for the purpose of allocating capital efficiently to a
portfolio we are interested in the returns of a stock and not
merely their prices, I convert the price data to daily returns as
a percentage. I also remove any outliers beyond three standard
deviations.

Finally, as done for the cryptocurrency data I use the
standard scaler to remove the mean and scale each column
to unit standard deviation.

B. Method

Before performing PCA, the data is split into train and test
sets to perform the analysis regarding the best portfolio. Using
the data from the year 2000 to mid 2015 (80% of the data) for
training and the remaining is held-out to perform backtesting
on the portfolios.

From fig. 9 we see that the most important component
explains over 35% of the variance. The level of correlation
between the stocks is reflected by the sharp drop in the
explained variance of the principal components.

Now to construct the portfolios, for this I convert the
principal components to portfolio weights. Since the principal
components are eigenvectors, I refer to these portfolios as
Eigen portfolios. The eigenvectors cannot directly be used
as although they are orthonormal, they do not sum to one.
Thus, I follow traditional normalisation while considering the
magnitudes of the variables, i.e., let p = {p;} € R?® be a
principal component we wish to convert to an Eigen portfolio.
Then the weights are given by:

|pi
Wi= s “)

Three of the Eigen portfolios can be seen in fig. 10.

C. Evaluation

Intuitively, each Eigen portfolio represents some kind of
independent risk factor. Eigen portfolio 1 (corresponding to the
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Fig. 9. Explained variance of the top ten principal components of the DJIA.
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Fig. 10. Three Eigen portfolios composed of stocks in the DJIA.

1% principal component) typically corresponds to a systematic
risk factor as this portfolio explains the largest ratio of the
variance of the DJIA. From fig. 10 we see that the weights
of this portfolio are almost even across all stocks. Eigen
portfolios 3 and 6 on the other hand correspond to a risk
factor associated with a specific industry sector. For example,
we see that portfolio 3 assigns more than 10% to each of
Exxon Mobil Corporation (XOM) and Chevron Corporation
(CVX). These companies are the largest and second largest
direct descendants of John D. Rockefeller’s Standard Oil.

To evaluate the Eigen portfolios, I calculate their respective
Sharpe ratios which can be seen in fig. 11. The Sharpe ratio is
a widely used financial metric that measures the risk-adjusted
return of an investment or portfolio by considering both the
investment’s returns and its volatility. A higher Sharpe ratio
indicates a better risk-adjusted return, as it means the portfolio
generated more return per unit of risk.

However, Sharpe ratio has limitations; it assumes that re-
turns are normally distributed and only considers volatility as a
measure of risk. Therefore, to better evaluate the performances
of the portfolios it is worth backtesting the portfolios on the
test data. The results of back testing can be seen in fig. 12.

As expected, Eigen portfolio 1 performs almost exactly as
the equally weighted index. Portfolio 6 marginally outper-
formed the weighted index, unsurprisingly as this portfolio
achieved the highest Sharpe ratio on the training data.
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Fig. 11. Sharpe ratios of each of the Eigen portfolios based on training data.
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III. HIERARCHICAL RISK PARITY

Hierarchical risk parity (HRP), introduced in [8], is an
approach to portfolio management which seeks to allocate risk
rather than capital. Portfolio weights are assigned such that all
assets contribute the same amount of risk.

A. Data Preprocessing

For this task I will be using a dataset consisting of 30 stocks
in the FTSE 100 from 2010 to 2019, three of which can be
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Fig. 13. Price data from three stocks in the FTSE 100.

seen in fig. 13. We can see that all three display an upwards
trend, while this is less pronounced for Burberry Group and
Diageo, while AstraZeneca appears to be significantly more
volatile.

I handle missing values as in section II-A, resulting in stock
with ticker “CDI” being dropped and 1,302 missing values
being filled using forward fill. Finally, I calculate the annual
returns and create a train-test split with 20% of the data held
out for testing.

B. Hierarchical Tree Clustering

This stage of HRP groups similar stocks into clusters based
on the correlation matrix. Let X € R**™ represent our dataset
where ¢ is number of instances and n is the number of
features (in this case stocks) and Cx = {p;;} € R™*" is the
corresponding correlation matrix. From C'x we calculate the
correlation-distance matrix D and from that calculate another
distance matrix D:

D ={dij} = /05 x (1 —p;;) € R"", (5)

D ={d;} =

The elements of D, d;; can be interpreted as the distance
between two assets ¢ and j, while Jij indicates the closeness
in similarity of these assets with the rest of the portfolio.

Assets are then clustered in a recursive manner via agglom-
erative clustering in which each point is initially considered an
individual cluster and at each step of the recursion the closest
pair of clusters is merged until only one cluster remains. Where
closeness is defined using D, and distance between clusters is
defined via a linkage criterion such as single linkage in which
the distance between two clusters is defined as the distance
between their closest points.

Fig. 14 shows the resulting dendrogram of this clustering;
the longer the branches are, the more dissimilar two clusters
are. For example, we see that “BDEV” and “BKG” are
represented as being close to each other which is expected
as both are real estate companies.
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Fig. 14. Dendrogram of our 29 FTSE 100 stocks resulting from Hierarchical
Tree Clustering.



C. Quasi-diagonalisation

Also known as matrix seriation, this stage rearranges the
covariance matrix such that similar stocks (based on the
hierarchical clusters of the previous step) are placed together.
The transformed covariance matrix, Vx € R"*", is known as
quasi-diagonal as (unlike in PCA) the off-diagonal elements
aren’t zero. It allows us to distribute weights optimally fol-
lowing an inverse-variance allocation.

D. Recursive Bisection

The final stage of HRP consists of distributing the allocation
through recursive bisection based on the cluster covariance
matrix, V. which is a subset of the rows and columns of Vx
based on the assets in cluster c.

We initialise the weights of all assets to one: W; =1, Vi =
1,...,n. Since the result of III-B was a binary tree, we
iterate through the tree starting at the root cluster which
contains all sub clusters and stocks. Let V7, and Vi be the
covariance matrices of the corresponding left and right sub-
clusters respectively. For each sub-cluster we calculate the
expected portfolio variance, vy, and vy according to eq. 7;

T
vr = wp Vrwr, (7N
where, wr is a weight distribution vector,

diag[Vr] 1
= 8
O diag[Vi] 1) ®
The weights of the assets in the left and right sub-clusters are
then updated as follows:

Wi «+ U—RI/Vl, VI € left sub-cluster,
vr + VR

W, « U—LWT, Vr € right sub-cluster.
vL + VR

These steps are repeated until we reach the leaf nodes.
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Fig. 15. Portfolio weights of our 29 FTSE 100 stocks derived from HRP.
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Fig. 16. Performance of HRP portfolio against an equally weighted portfolio
on unseen test data.

E. Evaluation

The performance of the HRP portfolio on the held-out test
data can be seen in fig. 16. We see that the portfolio derived
from HRP consistently outperforms the portfolio constructed
simply by taking an equal weighting of each of the 29 stocks.
The Sharpe ratios, 0.325 and 0.288 of the HRP and equally
weighted portfolios respectively further supports the advantage
of HRP.

IV. CHALLENGES OF MACHINE LEARNING IN PORTFOLIO
MANAGEMENT

Model interpretability poses a key challenge of using ma-
chine learning in portfolio management. The models are often
considered to be “black boxes” because their decision-making
process is not easily understood, especially for individuals un-
familiar with the algorithms involved. This issue is particularly
crucial in portfolio management as portfolio managers may
have a fiduciary duty to clients. It is critical that the manager
can explain their investment decisions to their clients or even
regulatory bodies. Interpretability is also vital for investors to
have confidence in the decision-making process. Additionally,
when a model is highly interpretable it is easier to identify
and correct biases or errors, thus improving the performance
of the resulting portfolio.

To mitigate the issue of interpretability, model-agnostic
interpretability techniques have been developed. For example,
Local Interpretable Model-agnostic Explanations (LIME) in-
troduced in [9], focusses on providing insights into how a par-
ticular prediction was made in classification problems. The key
idea being to approximate the decision boundary by perturbing
the input and observing the corresponding predictions of the
perturbed instances. Similarly, SHapley Additive exPlanations
(SHAP) introduced in [10] assigns each feature an importance
value for a particular prediction.

Rule-based models, such as decision trees offer greater
transparency and interpretability since they provide explicit
rules for (in this case) allocating weights to assets. Another
benefit of these models is that regulatory constraints or expert
knowledge can be explicitly baked into the decision-making
process.



Finally Explainable AI is an emerging field seeking to
develop new machine learning techniques which are inherently
interpretable, a brief history of which can be found in [11].

Another challenge is the issue of data quality and avail-
ability. Machine learning models, including those utilised in
portfolio management, heavily rely on training data to make
accurate decisions reliably. However, financial data can be
noisy, inconsistent, and as we saw in previous sections, often
contains missing values.

It is therefore essential that data preprocessing steps are
carried out before training any models. Most machine learning
methods cannot handle missing values and so missing values
must be either removed or filled in via, for example, mean
or regression imputation. Similarly, removing outliers can
improve the performance of models. These values can be
detected by considering their z-score, the number of standard
deviations by which the value is above or below the population
mean.

Often, to collect the quantity of financial data required,
data scientists necessarily source data from multiple sources.
To form a unified dataset, multiple data formats and any
inconsistencies must be dealt with. Techniques such as data
normalisation and standardisation can be applied to ensure
consistency and compatibility.

The utilisation of data in machine learning also raises ethical
considerations, such as privacy and unwanted societal biases.
Datasheets for Datasets proposed in [12] aims to mitigate these
and other issues by improving communication between dataset
creators and dataset consumers.

V. PERSONALISED PORTFOLIO SELECTION

To reduce labour costs associated with lengthy meetings
with clients sifting through various investment proposals, the
work of a financial advisor can be streamlined or replaced
entirely by exploiting automated recommender systems. Such
systems aim to address the information explosion that came
with the internet, commonly used for recommending music or
tv shows, the techniques involved are often domain agnostic
thus can be adapted for use in portfolio selection. Ensuring
the needs of investors are matched with appropriate financial
products.

In this section I give a critical review of the following recent
paper, Multi-Task Feature Learning for Knowledge Graph
Enhanced Recommendation [13], in which a state-of-the-art
recommender system (RS) is presented.

Motivated by the shortcomings of collaborative filtering
(CF), a popular technique which utilises historical user-item
interactions (such as clicking, watching, or purchasing) to
make recommendations, Multi-task feature learning approach
for Knowledge graph enhanced Recommendation (MKR)
seeks to augment (CF) via the use of external information
in the form of a knowledge graph (KG). The issues associated
with collaborative filtering are well known, namely the sparsity
of user-item interactions and the cold start problem, and the
concept of supplementing CF with side information such as
social networks, attributes, and multimedia is not novel. In

fact, the paper outlines several existing recommender systems
which utilise KGs. However, each one is shown to have a
downside, for example Personalized Entity Recommendation
[14] and Factorisation Machine with Group lasso [15] which
are said to have limited utility to generic scenarios due to
their reliance on manually designed meta-paths/meta-graphs.
Whereas MKR is a generic, end-to-end deep recommendation
framework.

Knowledge graphs tend to be preprocessed via knowledge
graph embedding (KGE) methods due to their high dimen-
sionality and heterogeneity, in which entities and relations are
embedded into a low-dimensional vector space. Rather than
treat each task individually, training the KGE and then the
RS, the paper recognises that the two tasks are not mutually
independent and design a cross&compress unit in MKR. The
cross&compress unit controls knowledge transfer between the
two tasks and hence the representations of items and entities
complement each other.

The paper validates its claimed contributions through both
a theoretical and empirical approach. For the theoretical anal-
ysis, the cross&compress units are shown to be able to model
the order of item-entity feature interaction up to exponential
degree. Demonstrating their superiority as compared to com-
peting methods. Although, this theoretical approach does not
guarantee performance, hence the need for experiments to be
designed to test the claims empirically.

Using datasets: MovieLens-1M, Book-Crossing, Last.FM,
and Bing-News, MKR is evaluated against four real world
recommendation scenarios: movie, book, music, and news.
Each dataset is split as 60% training data, 20% for validation
(tuning the hyper-parameters) and 20% for testing. The paper
uses both AUC and accuracy as performance metrics, reporting
the averages of three experiments. The results are impressive,
with MKR outperforming each of the baseline models. How-
ever, it’s worth noting that the hyper-parameter settings of
baselines were set as reported in their original papers. Hence
the competing models may have achieved better performance
if their hyper-parameters were tuned.

The MKR model has many learned parameters, so the
interpretability of the model is very poor. I would be inter-
ested in applying the mitigating techniques for interpretability
discussed in IV such as LIME [9] to MKR and in this way,
gain insight into how MKR could be improved.

Interestingly, the cross-knowledge transfer of items was
shown to benefit both KGE and RS tasks in MKR. Thus, a
further investigation into MKR, focussed on the performance
of the KGE task with comparisons to other contemporary KGE
methods could be fruitful.

Finally, the current architecture of MKR leaves lots of room
for modifications. For example, the extraction of user u’s latent
feature vector u;, could be performed with more elaborate
neural networks (such as CNNs) than the simple, fully con-
nected MLP and different activation functions could be tested.
Similarly, variations of predicting and score functions, frg and
frc could be experimented with.
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