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Abstract—This report was completed as course-
work for the module Advanced Financial Technology
(COMSM0090). I start of by explaining the function-
ing of a long short-term memory (LSTM) network
(introduced by [1] in 1997), before demonstrating
their effectiveness by forecasting the stock price of
Apple. I conclude by exploring an alternative RNN
architecture to LSTM.

Index Terms—Long Short-Term Memory, Recur-
rent Neural Network, Machine Learning

I. LONG SHORT-TERM MEMORY

LSTM networks are a variant of recurrent neural
networks (RNNs), which, unlike traditional feed-
forward neural networks, contain cycles allowing
them to exhibit temporal behaviour. Thus, making
RNNs very effective at processing sequential data
which is commonplace in finance.

A. Neural Network Layers
Let α = (α1, α2, α3) , β = (β1, β2, β3) be

the input and output respectively of our neural net-
work layer, shown in fig. 1 (note: their dimension
need not be equal). The weights in the network
are denoted as such; wij is the weight associated
with the connection from αj to βi, the connections
from the last input node (with value 1) are bias
terms and are denoted as bi. Each βi is calculated
according to:

βi = ϕ

(
3∑

j=1

wijxj + bi

)
, W =

(
w11 w12 w13 b1
w21 w22 w23 b2
w31 w32 w33 b3

)
(1)

where ϕ is an activation function, such as those
shown in fig. 1, the purpose of which is to intro-
duce nonlinearity into the model.

By letting W be the matrix of parameters (eq.
1 right) eq. 1 left simplifies to β = ϕ (W [α, 1]),
where [α, 1] is the concatenation of α and 1,
(α1, α2, α3, 1) and ϕ is applied point wise to the
vector resulting from matrix multiplication. The
weights and biases (parameters) can be preselected
but are more frequently learned via backpropaga-
tion (or in the case of a RNN, backpropagation
through time), a supervised learning technique.
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Activation Functions used in LSTMs

y = sigmoid(x)
y = tanh(x)

Fig. 1: Left: a single neural network layer. Each
connection goes from an input node (left) to an
output node (right) and has an associated weight.
Right: The activation functions used in LSTMs.

B. LSTM Cell

Fig. 2 depicts the inner workings of a single
cell of a LSTM network, (note: the neural network
parameters of the cell are reused in each cell, so
there is only one cell feeding its output back into
itself at each time step).

The added complexity of LSTM over a stan-
dard RNN solves the problem of long-term de-
pendencies [2] (resulting from the problem of
vanishing gradient in backpropagation, affecting
neural networks in general). This was done with
the cell state, Ct, which allows for a better flow
of information from the past to the present.

The cell state is updated via the forget and
input gates, depicted by red and blue arrows
respectively in fig. 2. The forget gate outputs
ft = σ (Wf [ht−1, xt]) ∈ (0, 1)d ⊂ Rd where
d is the dimension of the cell state. The entries
of ft represent how much of their corresponding
values in the cell state will be forgotten (0 being
completely forget and 1 remember completely).

There are two stages to the input gate, it =
σ (Wi[ht−1, xt]) ∈ (0, 1)d ⊂ Rd which deter-
mines what and to what degree should be added
to the cell state, and C ′

t = tanh (WC′ [ht−1, xt]) ∈
(−1, 1)d ⊂ Rd which represents candidate values
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Fig. 2: A single cell in a LSTM network; xt is the
input at time t, while ht is the output at time t.

which could be added to the cell state.
Finally, the cell state is updated (purple arrows)

via, Ct = ft ×Ct−1 + it ×C ′
t where addition and

multiplication are performed pointwise.
All that remains is to combine ht−1, xt and

Ct to output ht. This is done via the output gate
(green arrows), which gives ht = ot × tanh (Ct)
where ot = σ (Wo[ht−1, xt]) ∈ (0, 1)d ⊂ Rd

is used to decide what parts of the cell state to
output, and tanh is applied pointwise to Ct to push
its values between 0 and 1.

II. FORECASTING STOCK PRICE

The LSTM model used in fig. 3 used a cell
state with 32 dimensions and achieved a root mean
squared error of $3.62.
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Fig. 3: Daily open stock price of Apple.Inc from
the 3rd of January to the 30th of December 2022,
along with predictions made by a LSTM. Data
from before the 26th of October (80% of total data)
was used as training data.

Fig. 4 depicts the effect of the dimension of
the cell state on the performance of the LSTM

model on unseen test data (Apple.Inc stock price
data from 26/10/22 to 30/12/22), we can see that
d has little effect on the average RMSE (all lie
between $4.75 and $5.50), however the IQR grows
at the extreme values of d. The poor stability of
the models with larger d could be due to having
too many parameters to train.

On average models with d = 256 took 8
seconds to train whereas the models with d = 32
took just 1 second, which can be explained by
the latter having an eighth as many parameters to
train.
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Fig. 4: Root mean squared error on test data of 100
LSTM models for each value of d. Dashed green
line shows mean, orange line shows median.

III. LSTM ALTERNATIVE

Introduced in [3], clockwork recurrent neural
networks (CW-RNN) partition neurones into mod-
ules and assigns each one a clock period, Ti.
At time-step t, only the modules whose clock
period is a divisor of t are executed and recurrent
connections from module j to i exist only if the
period Ti < Tj .

Since not all modules are executed at every time
step CW-RNN train and evaluate faster and have
fewer parameters, because slower modules are not
connected to faster ones. In [3] a CW-RNN was
shown to outperform a LSTM of equal number
of parameters at both sequence generation and
spoken word classification.
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